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Abstract— In this paper I investigate the usage of least squares in machine learning. The 

primary question: are there any algorithms used in machine learning today that use least 

squares, will be answered. The aim of this paper is to get insight in the usage of least 

squares in the field of machine learning. I give an answer to the secondary questions; What 

is machine learning? What algorithms are used in machine learning? What different types of 

learning do exist? The method used is an investigation on the usage of least squares in 

traditional machine learning algorithms. By answering the secondary questions, I get closer 

to answering the primary question. I investigate the objective function used by the 

algorithms to determine if there is any usage of least squares. There is an overview of the 

used algorithms used in machine learning, and I show that least squares as an objective 

function is only used in linear regression.  
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1. Introduction 

 

The rationale for choosing the usage of least squares in machine learning as a topic for this paper 

is twofold.  

First, least squares is one of the oldest and most popular methods for fitting data. The method 

dates to 1805 and was officially discovered and published by Adrien-Marie Legendre (Merriman, 

1877).  
 

Second, “the least squares method is one of the most fundamental methods in Statistics to 

estimate correlations among various data.” (Fujii, 2018, p. 1). 

 

Since machine learning is quite a modern field, in that sense, it gained lots of popularity the last 

decade. It’s interesting to see if such a traditional method as the least squares is used in the more 

modern field of machine learning today.  
 

We think above reasons and the central question; are there any algorithms used in machine 

learning today that use least squares? Make an interesting subject for this paper. 

With this paper the aim is to get an insight in the usage of least squares in the field of machine 

learning.  
 

To narrow down the scope of this paper we will only address the fundamental algorithms used in 

traditional machine learning. With traditional machine learning we mean; we won’t be addressing 

deep learning.  
 

As stated, the central question we can ask ourselves is, are there any algorithms used in machine 

learning today that use least squares. Other questions that come to mind are. What is machine 

learning? What algorithms are used in machine learning? What different types of learning do exist? 

After answering these questions, we will conclude this paper with the answer on the central 

question. 
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2. What is machine Learning 

 

“Machine Learning is a subfield of computer science that is concerned with building algorithms 

which, to be useful, rely on a collection of examples of some phenomenon” (Burkov, 2019, p. 1). 
Based on examples of phenomena in the natural world we let machines learn. In the next section 

we will address the types of learning machines can use to learn.   
 

2.1 Types of Learning 

 

There are different types of learning defined in machine learning. Supervised, unsupervised, semi-

supervised and reinforcement learning. What follows is a short description of each type.  
 

In supervised learning, like the name already states, humans supervise the learning. Humans will 

label the examples of some phenomenon, which then will be fed to an algorithm. For instance, if 

we have a list of houses, the price of an individual house can be called a feature. In supervised 

learning these features typically are labeled by humans. 

Unsupervised learning contains a collection of unlabeled examples (Burkov, 2019). In contrast to 

supervised learning, the algorithm auto-discovers the labels of the dataset. 
 

Semi-supervised learning is a combination of the two methods stated earlier. It contains both 

labeled and unlabeled examples (Burkov, 2019).  
Humans label a part of the dataset, and the rest of the dataset is also auto discovered by the 

algorithm.  

According to (Burkov, 2019) reinforcement learning is a subfield of machine learning, where the 

machine lives in a defined environment and can perceive this environment.  
With the use of policies, the algorithm gets rewards and tries to optimize the behavior by 

maximizing the rewards it gets (Burkov, 2019).  

Above learning methods are the main types of learning in the traditional sense of machine learning. 

There exist other methods of learning like deep learning with neural nets, although this is out of the 

scope of this paper, we thought it was worth mentioning it. 

We have given answer to the question. What different types of learning do exist? After addressing 

the types of learning now it’s time address the fundamental algorithms used in machine learning in 

the next section.  

2.2 Fundamental algorithms 
 
In the previous section we have seen what different types of learning are used in machine learning. 

Now, to get closer to answering our central question, which is. What algorithms used in machine 

learning make use of least squares? We first need to answer the following question. What 

algorithms are the fundamental algorithms used in machine learning. This is what the next section 

will cover. 
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2.3 Linear Regression 

 

In the real world we try to find a linear relationship between two or more variables (Miller, n.d.). For 

example, the temperature of the day in Celsius degrees, and the number of visitors to a certain 

theme park. We may want to know if the number of visitors change when the temperature changes. 

Or, if I know the temperature of tomorrow, how many visitors can I expect? This is where linear 

regression comes in handy.  

According to (Miller, n.d.) the basic problem is to find the best fit straight-line  given that, 

for , the pairs are observed. With best fit is meant, the line that is the closest 

to all observed variables. 

In linear regression there can be a positive relationship or a negative relationship between 

variables. When there is a negative relationship, the line pointing downwards, the plus sign in the 

equation changes into a minus sign.  

 

This is the formula for linear regression: 
 

 

Where,  is the dependent variable, in our example the number of visitors.  is the slope,  is the 

independent variable, in our example the temperature and  is the y-intercept. To fill in the 

equation we need to calculate the slope of the line and we need to calculate the y-intercept of the 

line.  

To calculate the slope: 

 

 

To calculate the y-intercept: 

 
 

Having calculated these values, we can fill in the formula for linear regression, when new we do 

this by hand. In Python we can use the function linear regression from the package Scikit Learn or 

code the formula by hand. 
The objective of this model is to minimize the residual, that is the distance between a ground truth 

value  and the predicted value . The residual is sometimes called the squared error loss or 

mean squared error (MSE).  

We went over the main points in linear regression and have seen the real-world usability of this 

method. In the next section, we will talk about another important algorithm used in machine 

learning called logistic regression.  

  



   
 

  7 
 

2.4 Logistic Regression 

According to Burkov (2019), logistic regression is not a regression, but it’s a classification 

algorithm. The name is used in statistics and because the mathematical formula is similar to that of 

linear regression it’s called that way.  

Logistic regression is often used in binary classification, for example if the depend  can only be 0 

or 1. It’s also suitable for multiclass classification (Burkov, 2019). In multi-class classification you 

would want to have multiple classes like, airplane, bicycle, autobus et cetera. What logistic 

regression does is basically calculating the probability of  being of a certain class. 

To calculate the probability of an email being spam 1, or no spam 0 we could use the logistic 

regression formula like this: 
 

 

 

The outcome will be a value between 0 and 1, if the value is higher or equal then a certain 

threshold, let’s say 0.8, the email is classified as spam. In the denominator of the formula the 

resemblance with the linear regression model is visible. The difference between the two models is 

that in linear regression we minimize the mean squared error of our training data. 
In logistics regression we maximize the likelihood of our training data according to the model 

(Burkov, 2019). 

 

We have got a basic understanding of logistic regression. The next learning method we will 

describe is decision tree learning. 

2.5 Decision Tree Learning 
 
Decision trees make use of an acyclic graph that is used to make decisions. In each branching 

node within the graph, a specific feature  of the feature vector is examined (Burkov, 2019). When 

the value of the specific feature is lower than a certain threshold, the left branch is followed, else, 

the right branch is followed. The decision is made when the leaf node is reached (Burkov, 2019).  

One of the formulations of decision tree algorithms is called ID3: 

 

 

Here   is the decision tree. 

 

Decision trees are used in various applications. For example, the detection of anomalies in data. 

An advantage of decision trees is that the graphical notation makes it easy to understand. Which 

favors the explicability of the algorithm. 
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Figure 1 

Example of a decision tree for animals 

 

Note. Towards AI, Animal Tree.  
From https://towardsai.net, by Iriondo, 2018.  
(https://towardsai.net/p/machine-learning/differences-between-ai-and-machine-learning-1255b182fc6) 

Copyright 2018, Iriondo. 

In this section we have seen what decision tree learning can be used for. The next section is going 

to be about another important algorithm in traditional machine learning. The Support Vector 

Machine (SVM). 

 

2.6 Support Vector Machine 

 

One of the most influential approaches to supervised learning is the support vector machine (Boser 

et al., 1992; Cortes and Vapnik, 1995).  
To stick to the example of the spam filter, a human will label the messages with label either “spam” 

or “no-spam”. Since computers in the end only understand binary, we need to convert the words in 

the message containing the features we are looking for into a machine-readable format. This is 

done using the so-called “bag of words”. Basically, we count the number of occurrences a word 

appears in the text of the email. The presence of a certain word, for example “casino” in an email 

will make the feature 1, so the word “casino” is a feature with a value of 1.  

This is the model for Support Vector Machine (SVM): 

 

 

 

Where the sign function is a mathematical operation that converts every positive input to +1 and 

any negative input becomes –1. Here and  are the optimal values for parameters  and .  

SVM is used in classification and regression problems it is a very popular algorithm. In the next 

section we will cover k-Nearest Neighbors. 

  

https://towardsai.net/
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2.7 k-Nearest Neighbors 
 
k-Nearest Neighbors (kNN) is a so-called non-parametric learning algorithm. Where other learning 

algorithms allow discarding the training data after the model is build, kNN keeps all training data in 

memory (Burkov, 2019).  

In the example of our spam filter, if an unseen email comes in, the kNN algorithm finds  training 

examples closest to the email and returns the corresponding label. k-Nearest Neighbors makes 

use of a distance function to calculate the closeness between two examples. There are other 

distance functions kNN can use. For the scope of this investigation, we will only look at kNN with 

cosine similarity. 

Here is a kNN algorithm using cosine similarity as a distance function: 

 

 

  

Cosine similarity measures the directions of two vectors. When the angle between two vectors is 

equal to 0 degrees, the algorithm sets the cosine similarity to 1. In the case of orthogonal vectors, 

the cosine similarity is equal to 0 degrees. If vectors point in opposite directions the cosine 

similarity is equal to –1.  
k-Nearest Neighbors is widely used in machine learning. In this chapter kNN is the last algorithm 

we will cover; we have now explained the most fundamental algorithms in machine learning today. 

And answered one of the secondary questions of this paper; What algorithms are used in machine 

learning?  

The next chapter will cover the algorithms that use least squares, if any, and conclude this paper 

by giving the answer to our central question. What algorithms used in machine learning today use 

least squares?  
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3. Conclusion  

In chapter 2 we have seen what fundamental algorithms are used in machine learning today. We 

have got an introduction to the mathematical formulas behind them and have developed an 

intuition for the way they work. This chapter will focus on answering the question which of the 

fundamental algorithms used in machine learning make use of least squares if there are any of 

course. 
 

The first algorithm we covered is linear regression. The objective function, or simply put the 

objective of linear regression is to minimize the distance between a ground truth value  and the 

predicted value .  

The calculation of the residual  is done by subtracting the predicted variable  from observed 

variable , 

, 

 

Then we can do a summation over all values in the vector  squared, which we than should 

minimize,  

 

 

 

The least-squares method finds the optimal parameter values by minimizing the least-squares 

method (Dekking & Michel, 1946). 

Concluding we can say that linear regression, one of the fundamental algorithms in machine 

learning does indeed use the method of least squares.  

The second of the fundamental algorithms we covered is logistics regression. Although the names 

are similar, and we can see the resemblance in the mathematical notation between the two 

algorithms. The objective of both algorithms is not the same. Put another way, the optimization 

criterion of both functions is different. Where linear regression minimizes the average squared 

errors, logistics regression uses maximum likelihood. Therefore, we can conclude that logistic 

regression does not use least squares. 

Decision tree learning is the third of the machine learning algorithms we have covered in this 

paper. We used the ID3 implementation. Here we see that the optimization criterion used is 

average log likelihood. The mathematical formula does not show any least squares optimization.  
The conclusion we can make is that decision trees do not make use of least squares. 

Support vector machine is the fourth algorithm we have seen. Where least squares will try to 

minimize the distance between the regression line and the points on the hyperplane, the objective 

of SVM is to try and maximize the margin, between the two classes in the hyperplane, to create a 

so-called maximum-margin hyperplane. Therefore, we can conclude that SVM does not use least 

squares.  
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The fifth and last of the algorithms we have seen is k-Nearest Neighbors. The objective of this 

algorithm is to find the minimum distance between examples, put another way, the closeness 

between two examples. In this paper we have examined KNN with the distance function cosine 

similarity which makes use of calculating the distance in the directions of two vectors. Examining 

the formula of KNN we can conclude that there is no use of least squares.  

From the five algorithms we have examined only one algorithm uses least squares. It would be 

interesting for further research to investigate if there are any other algorithms used in machine 

learning or deep learning that under the hood use least squares. 
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Output Plots 

 

Figure 1. Chosen ideal functions 
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Figure 2. Test datapoints mapped to ideal datapoints 
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Read me 
 
To use the software provided with the written assignment of this paper please copy/paste the code 

in each code appendix to separate files and install the requirements.txt with PIP. Create two folders 

“data” and “output” in the directory where the Python files are and add the data CSV files to the 

“data” folder. The output folder is where the plots are saved with Bokeh. I recommend using a new 

virtual environment to keep this software separate from the system OS Python version. The 

software is tested on the Python version 3.6.9. If copy/pasting the code results in format problems, 

since sharing code through appendices isn’t a best practice, you can clone the repository which is 

described in appendix 10: Git Commands. 

Create Virtual environment 
pip install virtualenv virtualenvwrapper 

Update ~/.bashrc 

Use vim or nano to open ~/.bashrc and paste the next three line, save the file when done: 

 

export WORKON_HOME=$HOME/.virtualenvs 

export VIRTUALENVWRAPPER_PYTHON=/usr/bin/python3 

source /usr/local/bin/virtualenvwrapper.sh 

Source ~/.bashrc for changes to take place 

source ~/.bashrc 

 

Create virtual environment for the project 
mkvirtualenv nameofvirtualenv -p python3 

Install requirements.txt 
pip install -r requirements.txt 

Run main program 
python3 run_all.py 

  



   
 

  16 
 

Requirements (requirements.txt) 
 

absl-py==0.13.0 
appdirs==1.4.3 
apturl==0.5.2 
argcomplete==1.8.1 
argh==0.26.2 
asn1crypto==0.24.0 
astor==0.8.1 
Babel==2.4.0 
beautifulsoup4==4.6.0 
blinker==1.4 
Brlapi==0.6.6 
Brotli==1.0.4 
cached-property==1.5.2 
certifi==2018.1.18 
chardet==3.0.4 
click==6.7 
cliff==2.11.0 
cmd2==0.7.9 
colorama==0.3.7 
command-not-found==0.3 
ConfigArgParse==0.11.0 
construct==2.8.16 
cryptography==2.1.4 
cssutils==1.0.2 
cupshelpers==1.0 
debtcollector==1.13.0 
decorator==4.1.2 
defer==1.0.6 
deprecation==1.0.1 
distlib==0.3.2 
distro-info===0.18ubuntu0.18.04.1 
docutils==0.14 
dogpile.cache==0.6.2 
feedparser==5.2.1 
filelock==3.0.12 
Flask==0.12.2 
funcsigs==1.0.2 
gast==0.4.0 
google-pasta==0.2.0 
grpcio==1.38.0 
h2==3.0.1 
h5py==3.1.0 
hpack==3.0.0 
html2text==2018.1.9 
html5lib==0.999999999 
httplib2==0.9.2 
hyperframe==5.1.0 
idna==2.6 
importlib-metadata==4.5.0 
importlib-resources==5.1.4 
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iso8601==0.1.11 
itsdangerous==0.24 
Jinja2==2.10 
jmespath==0.9.3 
jsbeautifier==1.6.4 
jsonpatch==1.16 
jsonpointer==1.10 
kaitaistruct==0.7 
Keras-Applications==1.0.8 
Keras-Preprocessing==1.1.2 
keyring==10.6.0 
keyrings.alt==3.0 
keystoneauth1==3.4.0 
language-selector==0.1 
launchpadlib==1.10.6 
lazr.restfulclient==0.13.5 
lazr.uri==1.0.3 
louis==3.5.0 
lxml==4.2.1 
macaroonbakery==1.1.3 
Mako==1.0.7 
Markdown==3.3.4 
MarkupSafe==1.0 
mitmproxy==2.0.2 
monotonic==1.0 
msgpack==0.5.6 
munch==2.2.0 
netaddr==0.7.19 
netifaces==0.10.4 
numpy==1.19.5 
oauth==1.0.1 
oauthlib==2.0.6 
olefile==0.45.1 
openstacksdk==0.11.3 
os-client-config==1.29.0 
os-service-types==1.1.0 
osc-lib==1.9.0 
oslo.config==5.2.0 
oslo.i18n==3.19.0 
oslo.serialization==2.24.0 
oslo.utils==3.35.0 
passlib==1.7.1 
pathtools==0.1.2 
pbr==3.1.1 
pexpect==4.2.1 
Pillow==5.1.0 
positional==1.1.1 
prettytable==0.7.2 
protobuf==3.17.3 
pyasn1==0.4.2 
PyAudio==0.2.11 
pycairo==1.16.2 
pycrypto==2.6.1 



   
 

  18 
 

pycups==1.9.73 
Pygments==2.2.0 
pygobject==3.26.1 
pyinotify==0.9.6 
PyJWT==1.5.3 
pymacaroons==0.13.0 
PyNaCl==1.1.2 
pyOpenSSL==17.5.0 
pyparsing==2.2.0 
pyperclip==1.6.0 
pyRFC3339==1.0 
python-apt==1.6.5+ubuntu0.7 
python-dateutil==2.6.1 
python-debian==0.1.32 
python-keystoneclient==3.15.0 
python-magic==0.4.16 
python-neutronclient==6.7.0 
pytz==2018.3 
pyxdg==0.25 
PyYAML==3.12 
reportlab==3.4.0 
requests==2.18.4 
requests-unixsocket==0.1.5 
requestsexceptions==1.3.0 
rfc3986==0.3.1 
roman==2.0.0 
ruamel.yaml==0.15.34 
s3cmd==2.0.1 
scour==0.36 
SecretStorage==2.3.1 
simplejson==3.13.2 
six==1.11.0 
sortedcontainers==1.5.7 
stevedore==1.28.0 
system-service==0.3 
systemd-python==234 
tensorboard==1.14.0 
tensorflow==1.14.0 
tensorflow-estimator==1.14.0 
termcolor==1.1.0 
tornado==4.5.3 
typing-extensions==3.10.0.0 
ubuntu-advantage-tools==27.2 
ubuntu-drivers-common==0.0.0 
ufw==0.36 
unattended-upgrades==0.1 
urllib3==1.22 
urwid==2.0.1 
usb-creator==0.3.3 
virtualenv==20.4.7 
wadllib==1.3.2 
watchdog==0.8.3 
webencodings==0.5 
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Werkzeug==0.14.1 
wrapt==1.12.1 
xkit==0.0.0 
zipp==3.4.1 
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Database class (database.py) 
 

 

 
from sqlalchemy import create_engine, MetaData, Table, Column, Float, 

insert 
import pandas as pd 
from  collections import defaultdict 
import sqlalchemy as db 
from sqlalchemy.sql import text 
import math  
import numpy as np 
  
  
class DataBase(object): 
     
    ''' 
    This class is responsible for all data manipulation tasks e.g.: 

reading from CSV, writing to SQLite, updating data etc., also  
    the database connection and the creation of tables is done in this 

class. 
    ''' 
     
    def __init__(self): 
         
        ''' 
  
        Here we initiate the class with the parameters needed. 
        For convenience the creation of the SQLite engine for connecting  

to the database, the creation of 
        the table with test-data, with mapping and y-deviation is done 

here also. 
  
        ''' 
         
        self.training_data_df =  pd.read_csv('data/train.csv') #create 

Pandas dataframe from training csv file 
        self.table_name_training = "training" 
        self.ideal_data_df =  pd.read_csv('data/ideal.csv') #create 

Pandas dataframe from ideal data csv file 
        self.table_name_ideal = "ideal" 
        self.test_data_df =  pd.read_csv('data/test.csv') #create Pandas 

dataframe from test csv file 
        self.database_url = "sqlite:///data/linear-regression.db" 
        self.metadata = db.MetaData() 
        self.trainingdatamatrix = np.empty(shape=(400,5)) #create ndarray 

with training data, self.trainingdatamatrix is a (K x L matrix), where K 

= 400, and L is 5 
        self.idealdatamatrix = np.empty(shape=(400,51)) #create ndarray 

with ideal data, self.idealdatamatrix is a (K x L matrix), where K = 400, 

and L is 51         
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        # create SQLite engine and create table three to save test data, 

deviations  
        # and choosen ideal functions later 
        try: 
            self.engine = create_engine(self.database_url, echo = False) 
             
            table_three = Table( 
            'table_three', self.metadata,  
            Column('x_test', Float),  
            Column('y_test', Float),  
            Column('delta_y', Float), 
            Column('ideal_n_y', Float),) 
            self.metadata.create_all(self.engine) 
             
        except Exception as e: 
            print("This error occurred during the creation of the SQLite 

engine:") 
            print(e) 
             
  
             
    def insert_training_data(self): 
         
        ''' 
  
        This function inserts the training data from a CSV file into the 

SQLite database. 
  
        ''' 
         
        self.training_data_df.to_sql( #convert Pandas dataframe with 

training data to SQL 
        self.table_name_training, 
        self.engine, 
        if_exists='replace', 
        index=False, 
        chunksize=500, 
        dtype={ 
            "x": Float, 
            "y1": Float, 
            "y2": Float, 
            "y3": Float, 
            "y4": Float, 
        } 
    ) 
         
    def insert_ideal_data(self): 
         
        ''' 
  
        This function inserts the ideal data from a CSV file into the 

SQLite database. 
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        ''' 
         
        self.ideal_data_df.to_sql( # convert Pandas dataframe with ideal 

data to SQL 
        self.table_name_ideal, 
        self.engine, 
        if_exists = 'replace', 
        index = False, 
        chunksize = 500, 
        dtype = self.create_ideal_data_dict() # create ideal data 

dictionary, so we don't get 50 lines of y-value declarations 
    ) 
  
    def create_ideal_data_dict(self): 
         
        ''' 
  
        This function creates a dictionary to pass to the "dtype" 

argument in the "to_sql" function  
        of Pandas. Without this we would have 50 lines of column 

declarations in our code. 
         
        Returns: 
        dict: with columnnames as keys and "float" as value for each pair 
  
        ''' 
         
        self.ideal_data_dict = {"x": Float} 
        for i in range(1,51): 
            self.ideal_data_dict['y'+str(i)]=Float 
             
        return self.ideal_data_dict 
         
     
    def read_training_data(self): 
         
        ''' 
  
        This function reads the x and y-values from the SQLite database 

tables and creates  
        ndarray with shape (400, 5) 
         
        Raises: 
        A custom exception if there is an error reading the database  
  
        Returns: 
        ndarray with shape (400, 5) 
  
        ''' 
         
#         if not 1 <= y_column < 5: 
#             raise CustomException(y_column, "There are only four y-

columns in the training dataset, please provide 1, 2, 3 or 4 as values 



   
 

  23 
 

{}".format(y_column)) 
             
        self.training_data = db.Table('training', self.metadata, 

autoload=True, autoload_with=self.engine) 
        self.query = db.select([self.training_data.columns.x, 

self.training_data.columns.y1, self.training_data.columns.y2, 

self.training_data.columns.y3, self.training_data.columns.y4]) 
        self.results = self.engine.execute(self.query).fetchall() 
         
        start = 0  
        for value in self.results: 
            self.trainingdatamatrix[start] = self.results[start] #add 

values from SQLite to ndarray 
            start += 1     
         
        return self.trainingdatamatrix # (self.trainingdatamatrix is (K x 

L) matrix, where K = 400, and L is 5) 
     
     
    def read_ideal_data(self): 
         
        ''' 
  
        This function reads the x and y-values from the SQLite database 

tables (Ideal data ) and creates  
        ndarray with shape (400, 51) 
  
        Raises: 
        A custom exception if there is an error reading the database  
  
        Returns: 
        ndarray with shape (400, 51) 
  
        ''' 
        self.ideal_data = db.Table('ideal', self.metadata, autoload=True, 

autoload_with=self.engine) 
        self.query = db.select([self.ideal_data.columns.x, 

self.ideal_data.columns.y1, self.ideal_data.columns.y2, 

self.ideal_data.columns.y3, self.ideal_data.columns.y4, 

self.ideal_data.columns.y5, self.ideal_data.columns.y6, 

self.ideal_data.columns.y7, self.ideal_data.columns.y8, 

self.ideal_data.columns.y9, self.ideal_data.columns.y10, 

self.ideal_data.columns.y11, self.ideal_data.columns.y12, 

self.ideal_data.columns.y13, self.ideal_data.columns.y14, 

self.ideal_data.columns.y15, self.ideal_data.columns.y16, 

self.ideal_data.columns.y17, self.ideal_data.columns.y18, 

self.ideal_data.columns.y19, self.ideal_data.columns.y20, 

self.ideal_data.columns.y21, self.ideal_data.columns.y22, 

self.ideal_data.columns.y23, self.ideal_data.columns.y24, 

self.ideal_data.columns.y25, self.ideal_data.columns.y26, 

self.ideal_data.columns.y27, self.ideal_data.columns.y28, 

self.ideal_data.columns.y29, self.ideal_data.columns.y30, 

self.ideal_data.columns.y31, self.ideal_data.columns.y32, 
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self.ideal_data.columns.y33, self.ideal_data.columns.y34, 

self.ideal_data.columns.y35, self.ideal_data.columns.y36, 

self.ideal_data.columns.y37, self.ideal_data.columns.y38, 

self.ideal_data.columns.y39, self.ideal_data.columns.y40, 

self.ideal_data.columns.y41, self.ideal_data.columns.y42, 

self.ideal_data.columns.y43, self.ideal_data.columns.y44, 

self.ideal_data.columns.y45, self.ideal_data.columns.y46, 

self.ideal_data.columns.y47, self.ideal_data.columns.y48, 

self.ideal_data.columns.y49, self.ideal_data.columns.y50]) 
        self.results = self.engine.execute(self.query).fetchall() 
         
        start = 0  
        for value in self.results: 
            self.idealdatamatrix[start] = self.results[start] # add 

values from SQLite to ndarray 
            start += 1     
         
        return self.idealdatamatrix # (self.idealdatamatrix is (K x L) 

matrix, where K = 400, and L is 51) 
  
    def read_test_data(self): 
         
        ''' 
  
        This function reads the x and y-values from the test data CSV 

file and creates  
        ndarray with shape (100, 2) 
  
        Raises: 
        A custom exception if there is an error reading the CSV file  
  
        Returns: 
        ndarray with shape (100, 2) 
  
        ''' 
        return (self.test_data_df.to_numpy(copy=False))  
     
    def insert_mapped_test_data(self, x_test, y_test, delta_y, 

ideal_n_y): 
         
        ''' 
  
        This function saves the mapped testdata to the database 
  
        Raises: 
        A custom exception if there is an error saving the data 
  
        Returns: 
        Boolean: success or failure 
         
        Parameters: 
        x_test: decimal 
        y_test: decimal 



   
 

  25 
 

        delta_y: decimal 
        ideal_n_y: decimal 
         
        ''' 
  
        with self.engine.connect() as con: 
            self.rs = con.execute('INSERT INTO table_three (x_test, 

y_test, delta_y, ideal_n_y) VALUES (?, ?, ?, ?)', (x_test, y_test, 

delta_y, ideal_n_y)) 
            print (self.rs) 
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Custom Exception class (custom_exception.py) 

 
class CustomException(Exception): 
     
    ''' 
    In this class we created our own exceptions to raise when necessary. 
    ''' 
  
    def __init___(self, exception_parameter, exception_message): 
         
        super().__init__(self, exception_parameter, exception_message) 
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Plotting class (plot.py) 

 
from math import e 
from sqlalchemy import create_engine, MetaData, Table, Column, Float 
import pandas as pd 
import numpy as np 
from sklearn.linear_model import LinearRegression 
from bokeh.plotting import figure 
from bokeh.io import show, output_notebook, output_file 
from bokeh.layouts import gridplot, row 
from database import * 
from stats import * 
from bokeh.plotting import figure, show 
from bokeh.sampledata.iris import flowers 
from bokeh.models import Circle, ColumnDataSource, Grid, LinearAxis, Plot 
  
  
  
class Plot: 
     
    ''' 
    This class is responsible for all plotting tasks e.g.: plotting 

charts with training/test data etc. 
    '''     
     
    def plot_training_and_ideal(self): 
  
        output_file("output/chosen-ideal-functions.html") 
  
        # Get data from database class 
        data_actions = DataBase() 
        td = data_actions.read_training_data() 
        td_ideal = data_actions.read_ideal_data() 
         
        x = [row[0] for row in td] 
         
        y1 = [y1[1] for y1 in td] 
        i_y1 = [i_y1[16] for i_y1 in td_ideal] 
         
        # create plot with training data y1 
        s1 = figure(width=215, height=170, 

background_fill_color="#fafafa", title="Y1 from Training data") 
        s1.circle(x, y1, size=3, color="#53777a", alpha=0.8) 
  
        # create plot with ideal data y16 
        s2 = figure(width=215, height=170, 

background_fill_color="#fafafa", title="Chosen ideal function (Y16)") 
        s2.circle(x, i_y1, size=3, color="#c02942", alpha=0.8) 
     
        y2 = [y2[2] for y2 in td] 
        i_y2 = [i_y2[20] for i_y2 in td_ideal] 
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        # create plot with training data y2 
        s3 = figure(width=215, height=170, 

background_fill_color="#fafafa", title="Y2 from Training data") 
        s3.circle(x, y2, size=3, color="#53777a", alpha=0.8) 
  
        # create plot with ideal data y20 
        s4 = figure(width=215, height=170, 

background_fill_color="#fafafa", title="Chosen ideal function (Y20)") 
        s4.circle(x, i_y2, size=3, color="#c02942", alpha=0.8) 
         
        y3 = [y3[3] for y3 in td] 
        i_y3 = [i_y3[11] for i_y3 in td_ideal] 
         
        # create plot with training data y2 
        s5 = figure(width=215, height=170, 

background_fill_color="#fafafa", title="Y3 from Training data") 
        s5.circle(x, y3, size=3, color="#53777a", alpha=0.8) 
  
        # create plot with ideal data y3 
        s6 = figure(width=215, height=170, 

background_fill_color="#fafafa", title="Chosen ideal function (Y11)") 
        s6.circle(x, i_y3, size=3, color="#c02942", alpha=0.8) 
  
        y4 = [y4[4] for y4 in td] 
        i_y4 = [i_y4[18] for i_y4 in td_ideal] 
         
        # create plot with training data y2 
        s7 = figure(width=215, height=170, 

background_fill_color="#fafafa", title="Y4 from Training data") 
        s7.circle(x, y4, size=3, color="#53777a", alpha=0.8) 
  
        # create plot with ideal data y3 
        s8 = figure(width=215, height=170, 

background_fill_color="#fafafa", title="Chosen ideal function (Y18)") 
        s8.circle(x, i_y4, size=3, color="#c02942", alpha=0.8) 
         
        # make a grid 
        grid = gridplot([[s1, s2], [s3, s4], [s5, s6], [s7, s8]]) 
        show(grid) 
  
    def plot_test_ideal_data_points(self): 
  
        # output to static HTML file 
        output_file("output/testdata-mapped-to-idealdata.html") 
  
        # Get data from stats class 
        data = Stats() 
  
        mapped_test_data_point_x, mapped_ideal_data_point_x,\ 
        mapped_test_data_point_y, mapped_ideal_data_point_y\ 
        = data.map_test_data() 
  
        p = figure(plot_width = 600, plot_height=600, title = "Test 
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datapoints mapped to ideal datapoints") #, x_range=(-1000, 1000), 

y_range=(-1000, 1000) 
  
        circles1 = p.circle(mapped_test_data_point_x, 

mapped_test_data_point_y, size=5, color="red", line_color=None, 

legend_label="Test data points") 
        circles1.selection_glyph    = Circle(fill_color="blue", 

line_color=None) 
        circles1.nonselection_glyph = 

Circle(fill_color="red",  line_color=None) 
  
        circles2 = p.circle(mapped_ideal_data_point_x, 

mapped_ideal_data_point_y, size=5, color="blue", line_color=None, 

legend_label="Ideal data points") 
        circles2.selection_glyph    = Circle(fill_color="blue", 

line_color=None) 
        circles2.nonselection_glyph = 

Circle(fill_color="red",  line_color=None) 
  
        # display legend in top right corner 
        p.legend.location = "top_right" 
  
        # give title to legend 
        p.legend.title = "Mapped points" 
  
        show(p) 
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Statistics class (stats.py) 
 
from numpy.lib.function_base import append 
from database import * 
from plot import * 
  
     
class Stats(): 
     
    ''' 
    This class is responsible for all statistics needed for the 

assignment like,  
    choosing the Ideal function, calculating least squares, mean squared 

error etc. 
    ''' 
         
    def choose_ideal_functions(self): 
     
        ''' 
  
        This function chooses the ideal functions from the ideal table in 

the SQLite database table. 
        For each Y-value in the training data columns it computes the 

Total Least Squares deviation and  
        compares this with the computed Y-value deviations from the ideal 

data columns.  
        The one column from the ideal data that has the smallest 

difference in  
        Total Least Squares deviation with the training data is then 

choosen as ideal.  
  
  
        Raises: 
        .. 
  
        Returns: 
         
        Tuple with choosen ideal functions for each training function and 

the value of the deviation 
  
        ''' 
        np.set_printoptions(suppress=True) #Disable scientific notation 

in Numpy, so we can  
        #more easily see what our data looks like 
        data_actions = DataBase() 
        training_data = data_actions.read_training_data() 
        ideal_data = data_actions.read_ideal_data() 
         
        ty = np.delete(training_data, 0, axis=1) #remove column with x 

values from matrix, since we don't need it to choose Ideal function 
        iy = np.delete(ideal_data, 0, axis=1) #remove column with x 

values from matrix, since we don't need it to choose Ideal function 
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        #Create dictionaries with mean sqaured errors 
        mse_y_1 = {}  
        mse_y_2 = {} 
        mse_y_3 = {} 
        mse_y_4 = {} 
         
        for t_yn in range(0, 4): 
            for i_yn in range(0, 50): 
                mse = np.square(np.subtract(ty[:, t_yn],iy[:, 

i_yn])).mean() # calculate mean squared errors between training-y and 

ideal-y functions 
                if (t_yn == 0): 
                    mse_y_1[i_yn] = mse 
                if (t_yn == 1): 
                    mse_y_2[i_yn] = mse 
                if (t_yn == 2): 
                    mse_y_3[i_yn] = mse 
                if (t_yn == 3): 
                    mse_y_4[i_yn] = mse 
         
        # Create tuples y1..yn with the choosen ideal function minimum 

deviation and the value  
        # of the deviation 
        y_1 = min(mse_y_1.items(), key=lambda x: x[1])  
        y_2 = min(mse_y_2.items(), key=lambda x: x[1])  
        y_3 = min(mse_y_3.items(), key=lambda x: x[1])  
        y_4 = min(mse_y_4.items(), key=lambda x: x[1])  
         
        return y_1, y_2, y_3, y_4 
         
  
    def map_test_data(self): 
  
        ''' 
  
        This function will map the test data to the ideal data and save 

the deviation at hand 
        when the maximum deviation of the calculated regression does not 

exceed the largest deviation  
        between training dataset (A) and the ideal function (C) chosen 

for it by more than  
        factor sqrt(2)  
  
        Parameters: 
        .. 
  
        Raises: 
        .. 
  
        Returns: 
        .. 
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        ''' 
        np.set_printoptions(suppress=True) #Disable scientific notation 

in Numpy, so we can  
        #more easily see what our data looks like 
        data_actions = DataBase() 
        test_data = data_actions.read_test_data() 
        ideal_data = data_actions.read_ideal_data() 
         
        #Create lists of the ideal function columns from the matrix with 

ideal data 
        i_y1 = [i_y1[16] for i_y1 in ideal_data] 
        i_y2 = [i_y1[20] for i_y1 in ideal_data] 
        i_y3 = [i_y1[11] for i_y1 in ideal_data] 
        i_y4 = [i_y1[18] for i_y1 in ideal_data] 
        ideal_data_point_x = [i_x[0] for i_x in ideal_data] 
        
  
         
        ty = test_data 
        # max deviation  
        max_dev = 0.08778705256534793 
         
        max_dev_square_root = math.sqrt(max_dev) #error band, not exactly 

sure what teacher means, keep both, and ask Lino  
        devsquared = max_dev * math.sqrt(2) 
         
        # create lists of mapped points to pass to plotter class 
        mapped_test_data_point_x = [] 
        mapped_test_data_point_y = [] 
        mapped_ideal_data_point_x = [] 
        mapped_ideal_data_point_y = [] 
         
        for idt, t_yn in enumerate(ty): 
            for idi, ideal_data_point in enumerate(i_y1): 
                mse = 

np.square(np.subtract(t_yn[1],ideal_data_point)).mean() # calculate mean 

squared errors between training-y and ideal-y functions 
                if mse <= devsquared: 
                    data_actions.insert_mapped_test_data(t_yn[0], 

t_yn[1], mse, 16) 
                    mapped_test_data_point_x.append(t_yn[0]) 
                    mapped_test_data_point_y.append(t_yn[1]) 
                    mapped_ideal_data_point_x.append(ideal_data_point_x[i

di]) 
                    mapped_ideal_data_point_y.append(ideal_data_point) 
                     
            for idi2, ideal_data_point2 in enumerate(i_y2): 
                mse = 

np.square(np.subtract(t_yn[1],ideal_data_point2)).mean() # calculate mean 

squared  
                if mse <= devsquared: 
                    data_actions.insert_mapped_test_data(t_yn[0], 

t_yn[1], mse, 20) 
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                    mapped_test_data_point_x.append(t_yn[0]) 
                    mapped_test_data_point_y.append(t_yn[1]) 
                    mapped_ideal_data_point_x.append(ideal_data_point_x[i

di2]) 
                    mapped_ideal_data_point_y.append(ideal_data_point2) 
  
                     
            for idi3, ideal_data_point3 in enumerate(i_y3): 
                mse = 

np.square(np.subtract(t_yn[1],ideal_data_point3)).mean()  
                if mse <= devsquared: 
                    data_actions.insert_mapped_test_data(t_yn[0], 

t_yn[1], mse, 11) 
                    mapped_test_data_point_x.append(t_yn[0]) 
                    mapped_test_data_point_y.append(t_yn[1]) 
                    mapped_ideal_data_point_x.append(ideal_data_point_x[i

di3]) 
                    mapped_ideal_data_point_y.append(ideal_data_point3) 
                     
            for idi4, ideal_data_point4 in enumerate(i_y4): 
                mse = 

np.square(np.subtract(t_yn[1],ideal_data_point4)).mean()  
                if mse <= devsquared: 
                    data_actions.insert_mapped_test_data(t_yn[0], 

t_yn[1], mse, 18) 
                    mapped_test_data_point_x.append(t_yn[0]) 
                    mapped_test_data_point_y.append(t_yn[1]) 
                    mapped_ideal_data_point_x.append(ideal_data_point_x[i

di4]) 
                    mapped_ideal_data_point_y.append(ideal_data_point4) 
         
        return mapped_test_data_point_x, mapped_ideal_data_point_x, 

mapped_test_data_point_y, mapped_ideal_data_point_y 
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Unit test (unit_test.py) 
 

import unittest 
import pathlib as pl 
  
# Subclass unit test testcase 
class TestCaseBase(unittest.TestCase): 
    def assertIsFile(self, path): 
        if not pl.Path(path).resolve().is_file(): 
            raise AssertionError("File does not exist: %s" % str(path)) 
  
# Subclassing our own created TestCaseBase class 
class DataTest(TestCaseBase): 
    def test_test_data(self): 
        path = pl.Path("data/test.csv") 
        self.assertIsFile(path) 
  
    def test_ideal_data(self): 
        path = pl.Path("data/ideal.csv") 
        self.assertIsFile(path) 
  
    def test_train_data(self): 
        path = pl.Path("data/train.csv") 
        self.assertIsFile(path) 
  
if __name__ == '__main__': 
    unittest.main() 
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Main (run_ouput.py) 
 

from database import * 
from plot import * 
from stats import * 
from unit_test import * 
  
def my_suite(): 
    suite = unittest.TestSuite() 
    result = unittest.TestResult() 
    suite.addTest(unittest.makeSuite(DataTest)) 
    runner = unittest.TextTestRunner() 
    print(runner.run(suite)) 
  
def main(): 
  
    # run tests to check if datafiles are in place 
    my_suite() 
  
    data_actions = DataBase() 
    # Create Tables 
    data_actions.insert_training_data() 
    data_actions.insert_ideal_data() 
  
    plot_actions = Plot() 
    plot_actions.plot_training_and_ideal() 

 
    plot_actions.plot_test_ideal_data_points() 
  
# run the program 
if __name__ == "__main__":  
    main() 
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Git commands 

 
To clone the project 
git clone https://github.com/MadebyhumansAI/least-squares-ideal-functions.git 
 
After editing a file 
git commit -am "Edited file” 

To push it again to the repository 
git push 
 
After adding files to the repository 
git add filename  
 
Or to add all files that are changed 
git add . 

To check the status of the branche 
git status 

To pull the changes a colleague made 
git pull 

  

https://github.com/MadebyhumansAI/least-squares-ideal-functions.git
https://github.com/MadebyhumansAI/least-squares-ideal-functions.git
https://github.com/MadebyhumansAI/least-squares-ideal-functions.git
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