

 1

The usage of Least Squares in Machine Learning

MadeByHumans.ai research
Author: Luis Román

Fall 2021

Abstract— In this paper I investigate the usage of least squares in machine learning. The

primary question: are there any algorithms used in machine learning today that use least

squares, will be answered. The aim of this paper is to get insight in the usage of least

squares in the field of machine learning. I give an answer to the secondary questions; What

is machine learning? What algorithms are used in machine learning? What different types of

learning do exist? The method used is an investigation on the usage of least squares in

traditional machine learning algorithms. By answering the secondary questions, I get closer

to answering the primary question. I investigate the objective function used by the

algorithms to determine if there is any usage of least squares. There is an overview of the

used algorithms used in machine learning, and I show that least squares as an objective

function is only used in linear regression.

 2

List of Diagrams ... 3

Table of Abbreviations ... 3

1. Introduction .. 4

2. What is machine Learning .. 5

2.1 Types of Learning ... 5

2.2 Fundamental algorithms ... 5

2.3 Linear Regression... 6

2.4 Logistic Regression ... 7

2.5 Decision Tree Learning ... 7

2.6 Support Vector Machine ... 8

2.7 k-Nearest Neighbors .. 9

3. Conclusion .. 10

List of Appendices .. 12

Output Plots .. 13

Read me ... 15

Requirements (requirements.txt) .. 16

Database class (database.py) .. 20

Custom Exception class (custom_exception.py) ... 26

Plotting class (plot.py) ... 27

Statistics class (stats.py) .. 30

Unit test (unit_test.py) .. 34

Main (run_ouput.py) .. 35

Git commands .. 36

Bibliography .. 37

 3

List of Diagrams

Figure 1. Decision tree for animals …...5

Table of Abbreviations

Abbreviation Explanation

SVM Support Vector Machine

kNN k-Nearest Neighbors

MSE Mean Squared Error

 4

1. Introduction

The rationale for choosing the usage of least squares in machine learning as a topic for this paper

is twofold.

First, least squares is one of the oldest and most popular methods for fitting data. The method

dates to 1805 and was officially discovered and published by Adrien-Marie Legendre (Merriman,

1877).

Second, “the least squares method is one of the most fundamental methods in Statistics to

estimate correlations among various data.” (Fujii, 2018, p. 1).

Since machine learning is quite a modern field, in that sense, it gained lots of popularity the last

decade. It’s interesting to see if such a traditional method as the least squares is used in the more

modern field of machine learning today.

We think above reasons and the central question; are there any algorithms used in machine

learning today that use least squares? Make an interesting subject for this paper.

With this paper the aim is to get an insight in the usage of least squares in the field of machine

learning.

To narrow down the scope of this paper we will only address the fundamental algorithms used in

traditional machine learning. With traditional machine learning we mean; we won’t be addressing

deep learning.

As stated, the central question we can ask ourselves is, are there any algorithms used in machine

learning today that use least squares. Other questions that come to mind are. What is machine

learning? What algorithms are used in machine learning? What different types of learning do exist?

After answering these questions, we will conclude this paper with the answer on the central

question.

 5

2. What is machine Learning

“Machine Learning is a subfield of computer science that is concerned with building algorithms

which, to be useful, rely on a collection of examples of some phenomenon” (Burkov, 2019, p. 1).
Based on examples of phenomena in the natural world we let machines learn. In the next section

we will address the types of learning machines can use to learn.

2.1 Types of Learning

There are different types of learning defined in machine learning. Supervised, unsupervised, semi-

supervised and reinforcement learning. What follows is a short description of each type.

In supervised learning, like the name already states, humans supervise the learning. Humans will

label the examples of some phenomenon, which then will be fed to an algorithm. For instance, if

we have a list of houses, the price of an individual house can be called a feature. In supervised

learning these features typically are labeled by humans.

Unsupervised learning contains a collection of unlabeled examples (Burkov, 2019). In contrast to

supervised learning, the algorithm auto-discovers the labels of the dataset.

Semi-supervised learning is a combination of the two methods stated earlier. It contains both

labeled and unlabeled examples (Burkov, 2019).
Humans label a part of the dataset, and the rest of the dataset is also auto discovered by the

algorithm.

According to (Burkov, 2019) reinforcement learning is a subfield of machine learning, where the

machine lives in a defined environment and can perceive this environment.
With the use of policies, the algorithm gets rewards and tries to optimize the behavior by

maximizing the rewards it gets (Burkov, 2019).

Above learning methods are the main types of learning in the traditional sense of machine learning.

There exist other methods of learning like deep learning with neural nets, although this is out of the

scope of this paper, we thought it was worth mentioning it.

We have given answer to the question. What different types of learning do exist? After addressing

the types of learning now it’s time address the fundamental algorithms used in machine learning in

the next section.

2.2 Fundamental algorithms

In the previous section we have seen what different types of learning are used in machine learning.

Now, to get closer to answering our central question, which is. What algorithms used in machine

learning make use of least squares? We first need to answer the following question. What

algorithms are the fundamental algorithms used in machine learning. This is what the next section

will cover.

 6

2.3 Linear Regression

In the real world we try to find a linear relationship between two or more variables (Miller, n.d.). For

example, the temperature of the day in Celsius degrees, and the number of visitors to a certain

theme park. We may want to know if the number of visitors change when the temperature changes.

Or, if I know the temperature of tomorrow, how many visitors can I expect? This is where linear

regression comes in handy.

According to (Miller, n.d.) the basic problem is to find the best fit straight-line given that,

for , the pairs are observed. With best fit is meant, the line that is the closest

to all observed variables.

In linear regression there can be a positive relationship or a negative relationship between

variables. When there is a negative relationship, the line pointing downwards, the plus sign in the

equation changes into a minus sign.

This is the formula for linear regression:

Where, is the dependent variable, in our example the number of visitors. is the slope, is the

independent variable, in our example the temperature and is the y-intercept. To fill in the

equation we need to calculate the slope of the line and we need to calculate the y-intercept of the

line.

To calculate the slope:

To calculate the y-intercept:

Having calculated these values, we can fill in the formula for linear regression, when new we do

this by hand. In Python we can use the function linear regression from the package Scikit Learn or

code the formula by hand.
The objective of this model is to minimize the residual, that is the distance between a ground truth

value and the predicted value . The residual is sometimes called the squared error loss or

mean squared error (MSE).

We went over the main points in linear regression and have seen the real-world usability of this

method. In the next section, we will talk about another important algorithm used in machine

learning called logistic regression.

 7

2.4 Logistic Regression

According to Burkov (2019), logistic regression is not a regression, but it’s a classification

algorithm. The name is used in statistics and because the mathematical formula is similar to that of

linear regression it’s called that way.

Logistic regression is often used in binary classification, for example if the depend can only be 0

or 1. It’s also suitable for multiclass classification (Burkov, 2019). In multi-class classification you

would want to have multiple classes like, airplane, bicycle, autobus et cetera. What logistic

regression does is basically calculating the probability of being of a certain class.

To calculate the probability of an email being spam 1, or no spam 0 we could use the logistic

regression formula like this:

The outcome will be a value between 0 and 1, if the value is higher or equal then a certain

threshold, let’s say 0.8, the email is classified as spam. In the denominator of the formula the

resemblance with the linear regression model is visible. The difference between the two models is

that in linear regression we minimize the mean squared error of our training data.
In logistics regression we maximize the likelihood of our training data according to the model

(Burkov, 2019).

We have got a basic understanding of logistic regression. The next learning method we will

describe is decision tree learning.

2.5 Decision Tree Learning

Decision trees make use of an acyclic graph that is used to make decisions. In each branching

node within the graph, a specific feature of the feature vector is examined (Burkov, 2019). When

the value of the specific feature is lower than a certain threshold, the left branch is followed, else,

the right branch is followed. The decision is made when the leaf node is reached (Burkov, 2019).

One of the formulations of decision tree algorithms is called ID3:

Here is the decision tree.

Decision trees are used in various applications. For example, the detection of anomalies in data.

An advantage of decision trees is that the graphical notation makes it easy to understand. Which

favors the explicability of the algorithm.

 8

Figure 1

Example of a decision tree for animals

Note. Towards AI, Animal Tree.
From https://towardsai.net, by Iriondo, 2018.
(https://towardsai.net/p/machine-learning/differences-between-ai-and-machine-learning-1255b182fc6)

Copyright 2018, Iriondo.

In this section we have seen what decision tree learning can be used for. The next section is going

to be about another important algorithm in traditional machine learning. The Support Vector

Machine (SVM).

2.6 Support Vector Machine

One of the most influential approaches to supervised learning is the support vector machine (Boser

et al., 1992; Cortes and Vapnik, 1995).
To stick to the example of the spam filter, a human will label the messages with label either “spam”

or “no-spam”. Since computers in the end only understand binary, we need to convert the words in

the message containing the features we are looking for into a machine-readable format. This is

done using the so-called “bag of words”. Basically, we count the number of occurrences a word

appears in the text of the email. The presence of a certain word, for example “casino” in an email

will make the feature 1, so the word “casino” is a feature with a value of 1.

This is the model for Support Vector Machine (SVM):

Where the sign function is a mathematical operation that converts every positive input to +1 and

any negative input becomes –1. Here and are the optimal values for parameters and .

SVM is used in classification and regression problems it is a very popular algorithm. In the next

section we will cover k-Nearest Neighbors.

https://towardsai.net/

 9

2.7 k-Nearest Neighbors

k-Nearest Neighbors (kNN) is a so-called non-parametric learning algorithm. Where other learning

algorithms allow discarding the training data after the model is build, kNN keeps all training data in

memory (Burkov, 2019).

In the example of our spam filter, if an unseen email comes in, the kNN algorithm finds training

examples closest to the email and returns the corresponding label. k-Nearest Neighbors makes

use of a distance function to calculate the closeness between two examples. There are other

distance functions kNN can use. For the scope of this investigation, we will only look at kNN with

cosine similarity.

Here is a kNN algorithm using cosine similarity as a distance function:

Cosine similarity measures the directions of two vectors. When the angle between two vectors is

equal to 0 degrees, the algorithm sets the cosine similarity to 1. In the case of orthogonal vectors,

the cosine similarity is equal to 0 degrees. If vectors point in opposite directions the cosine

similarity is equal to –1.
k-Nearest Neighbors is widely used in machine learning. In this chapter kNN is the last algorithm

we will cover; we have now explained the most fundamental algorithms in machine learning today.

And answered one of the secondary questions of this paper; What algorithms are used in machine

learning?

The next chapter will cover the algorithms that use least squares, if any, and conclude this paper

by giving the answer to our central question. What algorithms used in machine learning today use

least squares?

 10

3. Conclusion

In chapter 2 we have seen what fundamental algorithms are used in machine learning today. We

have got an introduction to the mathematical formulas behind them and have developed an

intuition for the way they work. This chapter will focus on answering the question which of the

fundamental algorithms used in machine learning make use of least squares if there are any of

course.

The first algorithm we covered is linear regression. The objective function, or simply put the

objective of linear regression is to minimize the distance between a ground truth value and the

predicted value .

The calculation of the residual is done by subtracting the predicted variable from observed

variable ,

,

Then we can do a summation over all values in the vector squared, which we than should

minimize,

The least-squares method finds the optimal parameter values by minimizing the least-squares

method (Dekking & Michel, 1946).

Concluding we can say that linear regression, one of the fundamental algorithms in machine

learning does indeed use the method of least squares.

The second of the fundamental algorithms we covered is logistics regression. Although the names

are similar, and we can see the resemblance in the mathematical notation between the two

algorithms. The objective of both algorithms is not the same. Put another way, the optimization

criterion of both functions is different. Where linear regression minimizes the average squared

errors, logistics regression uses maximum likelihood. Therefore, we can conclude that logistic

regression does not use least squares.

Decision tree learning is the third of the machine learning algorithms we have covered in this

paper. We used the ID3 implementation. Here we see that the optimization criterion used is

average log likelihood. The mathematical formula does not show any least squares optimization.
The conclusion we can make is that decision trees do not make use of least squares.

Support vector machine is the fourth algorithm we have seen. Where least squares will try to

minimize the distance between the regression line and the points on the hyperplane, the objective

of SVM is to try and maximize the margin, between the two classes in the hyperplane, to create a

so-called maximum-margin hyperplane. Therefore, we can conclude that SVM does not use least

squares.

 11

The fifth and last of the algorithms we have seen is k-Nearest Neighbors. The objective of this

algorithm is to find the minimum distance between examples, put another way, the closeness

between two examples. In this paper we have examined KNN with the distance function cosine

similarity which makes use of calculating the distance in the directions of two vectors. Examining

the formula of KNN we can conclude that there is no use of least squares.

From the five algorithms we have examined only one algorithm uses least squares. It would be

interesting for further research to investigate if there are any other algorithms used in machine

learning or deep learning that under the hood use least squares.

 12

List of Appendices

1. Output Plots

2. Read me
3. Requirements.txt

4. Database class

5. Custom Exception class

6. Plotting class

7. Statistics class

8. Unit Test

9. Main function

10. Git Commands

 13

Output Plots

Figure 1. Chosen ideal functions

 14

Figure 2. Test datapoints mapped to ideal datapoints

 15

Read me

To use the software provided with the written assignment of this paper please copy/paste the code

in each code appendix to separate files and install the requirements.txt with PIP. Create two folders

“data” and “output” in the directory where the Python files are and add the data CSV files to the

“data” folder. The output folder is where the plots are saved with Bokeh. I recommend using a new

virtual environment to keep this software separate from the system OS Python version. The

software is tested on the Python version 3.6.9. If copy/pasting the code results in format problems,

since sharing code through appendices isn’t a best practice, you can clone the repository which is

described in appendix 10: Git Commands.

Create Virtual environment
pip install virtualenv virtualenvwrapper

Update ~/.bashrc

Use vim or nano to open ~/.bashrc and paste the next three line, save the file when done:

export WORKON_HOME=$HOME/.virtualenvs

export VIRTUALENVWRAPPER_PYTHON=/usr/bin/python3

source /usr/local/bin/virtualenvwrapper.sh

Source ~/.bashrc for changes to take place

source ~/.bashrc

Create virtual environment for the project
mkvirtualenv nameofvirtualenv -p python3

Install requirements.txt
pip install -r requirements.txt

Run main program
python3 run_all.py

 16

Requirements (requirements.txt)

absl-py==0.13.0
appdirs==1.4.3
apturl==0.5.2
argcomplete==1.8.1
argh==0.26.2
asn1crypto==0.24.0
astor==0.8.1
Babel==2.4.0
beautifulsoup4==4.6.0
blinker==1.4
Brlapi==0.6.6
Brotli==1.0.4
cached-property==1.5.2
certifi==2018.1.18
chardet==3.0.4
click==6.7
cliff==2.11.0
cmd2==0.7.9
colorama==0.3.7
command-not-found==0.3
ConfigArgParse==0.11.0
construct==2.8.16
cryptography==2.1.4
cssutils==1.0.2
cupshelpers==1.0
debtcollector==1.13.0
decorator==4.1.2
defer==1.0.6
deprecation==1.0.1
distlib==0.3.2
distro-info===0.18ubuntu0.18.04.1
docutils==0.14
dogpile.cache==0.6.2
feedparser==5.2.1
filelock==3.0.12
Flask==0.12.2
funcsigs==1.0.2
gast==0.4.0
google-pasta==0.2.0
grpcio==1.38.0
h2==3.0.1
h5py==3.1.0
hpack==3.0.0
html2text==2018.1.9
html5lib==0.999999999
httplib2==0.9.2
hyperframe==5.1.0
idna==2.6
importlib-metadata==4.5.0
importlib-resources==5.1.4

 17

iso8601==0.1.11
itsdangerous==0.24
Jinja2==2.10
jmespath==0.9.3
jsbeautifier==1.6.4
jsonpatch==1.16
jsonpointer==1.10
kaitaistruct==0.7
Keras-Applications==1.0.8
Keras-Preprocessing==1.1.2
keyring==10.6.0
keyrings.alt==3.0
keystoneauth1==3.4.0
language-selector==0.1
launchpadlib==1.10.6
lazr.restfulclient==0.13.5
lazr.uri==1.0.3
louis==3.5.0
lxml==4.2.1
macaroonbakery==1.1.3
Mako==1.0.7
Markdown==3.3.4
MarkupSafe==1.0
mitmproxy==2.0.2
monotonic==1.0
msgpack==0.5.6
munch==2.2.0
netaddr==0.7.19
netifaces==0.10.4
numpy==1.19.5
oauth==1.0.1
oauthlib==2.0.6
olefile==0.45.1
openstacksdk==0.11.3
os-client-config==1.29.0
os-service-types==1.1.0
osc-lib==1.9.0
oslo.config==5.2.0
oslo.i18n==3.19.0
oslo.serialization==2.24.0
oslo.utils==3.35.0
passlib==1.7.1
pathtools==0.1.2
pbr==3.1.1
pexpect==4.2.1
Pillow==5.1.0
positional==1.1.1
prettytable==0.7.2
protobuf==3.17.3
pyasn1==0.4.2
PyAudio==0.2.11
pycairo==1.16.2
pycrypto==2.6.1

 18

pycups==1.9.73
Pygments==2.2.0
pygobject==3.26.1
pyinotify==0.9.6
PyJWT==1.5.3
pymacaroons==0.13.0
PyNaCl==1.1.2
pyOpenSSL==17.5.0
pyparsing==2.2.0
pyperclip==1.6.0
pyRFC3339==1.0
python-apt==1.6.5+ubuntu0.7
python-dateutil==2.6.1
python-debian==0.1.32
python-keystoneclient==3.15.0
python-magic==0.4.16
python-neutronclient==6.7.0
pytz==2018.3
pyxdg==0.25
PyYAML==3.12
reportlab==3.4.0
requests==2.18.4
requests-unixsocket==0.1.5
requestsexceptions==1.3.0
rfc3986==0.3.1
roman==2.0.0
ruamel.yaml==0.15.34
s3cmd==2.0.1
scour==0.36
SecretStorage==2.3.1
simplejson==3.13.2
six==1.11.0
sortedcontainers==1.5.7
stevedore==1.28.0
system-service==0.3
systemd-python==234
tensorboard==1.14.0
tensorflow==1.14.0
tensorflow-estimator==1.14.0
termcolor==1.1.0
tornado==4.5.3
typing-extensions==3.10.0.0
ubuntu-advantage-tools==27.2
ubuntu-drivers-common==0.0.0
ufw==0.36
unattended-upgrades==0.1
urllib3==1.22
urwid==2.0.1
usb-creator==0.3.3
virtualenv==20.4.7
wadllib==1.3.2
watchdog==0.8.3
webencodings==0.5

 19

Werkzeug==0.14.1
wrapt==1.12.1
xkit==0.0.0
zipp==3.4.1

 20

Database class (database.py)

from sqlalchemy import create_engine, MetaData, Table, Column, Float,

insert
import pandas as pd
from collections import defaultdict
import sqlalchemy as db
from sqlalchemy.sql import text
import math
import numpy as np

class DataBase(object):

 '''
 This class is responsible for all data manipulation tasks e.g.:

reading from CSV, writing to SQLite, updating data etc., also
 the database connection and the creation of tables is done in this

class.
 '''

 def __init__(self):

 '''

 Here we initiate the class with the parameters needed.
 For convenience the creation of the SQLite engine for connecting

to the database, the creation of
 the table with test-data, with mapping and y-deviation is done

here also.

 '''

 self.training_data_df = pd.read_csv('data/train.csv') #create

Pandas dataframe from training csv file
 self.table_name_training = "training"
 self.ideal_data_df = pd.read_csv('data/ideal.csv') #create

Pandas dataframe from ideal data csv file
 self.table_name_ideal = "ideal"
 self.test_data_df = pd.read_csv('data/test.csv') #create Pandas

dataframe from test csv file
 self.database_url = "sqlite:///data/linear-regression.db"
 self.metadata = db.MetaData()
 self.trainingdatamatrix = np.empty(shape=(400,5)) #create ndarray

with training data, self.trainingdatamatrix is a (K x L matrix), where K

= 400, and L is 5
 self.idealdatamatrix = np.empty(shape=(400,51)) #create ndarray

with ideal data, self.idealdatamatrix is a (K x L matrix), where K = 400,

and L is 51

 21

 # create SQLite engine and create table three to save test data,

deviations
 # and choosen ideal functions later
 try:
 self.engine = create_engine(self.database_url, echo = False)

 table_three = Table(
 'table_three', self.metadata,
 Column('x_test', Float),
 Column('y_test', Float),
 Column('delta_y', Float),
 Column('ideal_n_y', Float),)
 self.metadata.create_all(self.engine)

 except Exception as e:
 print("This error occurred during the creation of the SQLite

engine:")
 print(e)

 def insert_training_data(self):

 '''

 This function inserts the training data from a CSV file into the

SQLite database.

 '''

 self.training_data_df.to_sql(#convert Pandas dataframe with

training data to SQL
 self.table_name_training,
 self.engine,
 if_exists='replace',
 index=False,
 chunksize=500,
 dtype={
 "x": Float,
 "y1": Float,
 "y2": Float,
 "y3": Float,
 "y4": Float,
 }
)

 def insert_ideal_data(self):

 '''

 This function inserts the ideal data from a CSV file into the

SQLite database.

 22

 '''

 self.ideal_data_df.to_sql(# convert Pandas dataframe with ideal

data to SQL
 self.table_name_ideal,
 self.engine,
 if_exists = 'replace',
 index = False,
 chunksize = 500,
 dtype = self.create_ideal_data_dict() # create ideal data

dictionary, so we don't get 50 lines of y-value declarations
)

 def create_ideal_data_dict(self):

 '''

 This function creates a dictionary to pass to the "dtype"

argument in the "to_sql" function
 of Pandas. Without this we would have 50 lines of column

declarations in our code.

 Returns:
 dict: with columnnames as keys and "float" as value for each pair

 '''

 self.ideal_data_dict = {"x": Float}
 for i in range(1,51):
 self.ideal_data_dict['y'+str(i)]=Float

 return self.ideal_data_dict

 def read_training_data(self):

 '''

 This function reads the x and y-values from the SQLite database

tables and creates
 ndarray with shape (400, 5)

 Raises:
 A custom exception if there is an error reading the database

 Returns:
 ndarray with shape (400, 5)

 '''

if not 1 <= y_column < 5:
raise CustomException(y_column, "There are only four y-

columns in the training dataset, please provide 1, 2, 3 or 4 as values

 23

{}".format(y_column))

 self.training_data = db.Table('training', self.metadata,

autoload=True, autoload_with=self.engine)
 self.query = db.select([self.training_data.columns.x,

self.training_data.columns.y1, self.training_data.columns.y2,

self.training_data.columns.y3, self.training_data.columns.y4])
 self.results = self.engine.execute(self.query).fetchall()

 start = 0
 for value in self.results:
 self.trainingdatamatrix[start] = self.results[start] #add

values from SQLite to ndarray
 start += 1

 return self.trainingdatamatrix # (self.trainingdatamatrix is (K x

L) matrix, where K = 400, and L is 5)

 def read_ideal_data(self):

 '''

 This function reads the x and y-values from the SQLite database

tables (Ideal data) and creates
 ndarray with shape (400, 51)

 Raises:
 A custom exception if there is an error reading the database

 Returns:
 ndarray with shape (400, 51)

 '''
 self.ideal_data = db.Table('ideal', self.metadata, autoload=True,

autoload_with=self.engine)
 self.query = db.select([self.ideal_data.columns.x,

self.ideal_data.columns.y1, self.ideal_data.columns.y2,

self.ideal_data.columns.y3, self.ideal_data.columns.y4,

self.ideal_data.columns.y5, self.ideal_data.columns.y6,

self.ideal_data.columns.y7, self.ideal_data.columns.y8,

self.ideal_data.columns.y9, self.ideal_data.columns.y10,

self.ideal_data.columns.y11, self.ideal_data.columns.y12,

self.ideal_data.columns.y13, self.ideal_data.columns.y14,

self.ideal_data.columns.y15, self.ideal_data.columns.y16,

self.ideal_data.columns.y17, self.ideal_data.columns.y18,

self.ideal_data.columns.y19, self.ideal_data.columns.y20,

self.ideal_data.columns.y21, self.ideal_data.columns.y22,

self.ideal_data.columns.y23, self.ideal_data.columns.y24,

self.ideal_data.columns.y25, self.ideal_data.columns.y26,

self.ideal_data.columns.y27, self.ideal_data.columns.y28,

self.ideal_data.columns.y29, self.ideal_data.columns.y30,

self.ideal_data.columns.y31, self.ideal_data.columns.y32,

 24

self.ideal_data.columns.y33, self.ideal_data.columns.y34,

self.ideal_data.columns.y35, self.ideal_data.columns.y36,

self.ideal_data.columns.y37, self.ideal_data.columns.y38,

self.ideal_data.columns.y39, self.ideal_data.columns.y40,

self.ideal_data.columns.y41, self.ideal_data.columns.y42,

self.ideal_data.columns.y43, self.ideal_data.columns.y44,

self.ideal_data.columns.y45, self.ideal_data.columns.y46,

self.ideal_data.columns.y47, self.ideal_data.columns.y48,

self.ideal_data.columns.y49, self.ideal_data.columns.y50])
 self.results = self.engine.execute(self.query).fetchall()

 start = 0
 for value in self.results:
 self.idealdatamatrix[start] = self.results[start] # add

values from SQLite to ndarray
 start += 1

 return self.idealdatamatrix # (self.idealdatamatrix is (K x L)

matrix, where K = 400, and L is 51)

 def read_test_data(self):

 '''

 This function reads the x and y-values from the test data CSV

file and creates
 ndarray with shape (100, 2)

 Raises:
 A custom exception if there is an error reading the CSV file

 Returns:
 ndarray with shape (100, 2)

 '''
 return (self.test_data_df.to_numpy(copy=False))

 def insert_mapped_test_data(self, x_test, y_test, delta_y,

ideal_n_y):

 '''

 This function saves the mapped testdata to the database

 Raises:
 A custom exception if there is an error saving the data

 Returns:
 Boolean: success or failure

 Parameters:
 x_test: decimal
 y_test: decimal

 25

 delta_y: decimal
 ideal_n_y: decimal

 '''

 with self.engine.connect() as con:
 self.rs = con.execute('INSERT INTO table_three (x_test,

y_test, delta_y, ideal_n_y) VALUES (?, ?, ?, ?)', (x_test, y_test,

delta_y, ideal_n_y))
 print (self.rs)

 26

Custom Exception class (custom_exception.py)

class CustomException(Exception):

 '''
 In this class we created our own exceptions to raise when necessary.
 '''

 def __init___(self, exception_parameter, exception_message):

 super().__init__(self, exception_parameter, exception_message)

 27

Plotting class (plot.py)

from math import e
from sqlalchemy import create_engine, MetaData, Table, Column, Float
import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression
from bokeh.plotting import figure
from bokeh.io import show, output_notebook, output_file
from bokeh.layouts import gridplot, row
from database import *
from stats import *
from bokeh.plotting import figure, show
from bokeh.sampledata.iris import flowers
from bokeh.models import Circle, ColumnDataSource, Grid, LinearAxis, Plot

class Plot:

 '''
 This class is responsible for all plotting tasks e.g.: plotting

charts with training/test data etc.
 '''

 def plot_training_and_ideal(self):

 output_file("output/chosen-ideal-functions.html")

 # Get data from database class
 data_actions = DataBase()
 td = data_actions.read_training_data()
 td_ideal = data_actions.read_ideal_data()

 x = [row[0] for row in td]

 y1 = [y1[1] for y1 in td]
 i_y1 = [i_y1[16] for i_y1 in td_ideal]

 # create plot with training data y1
 s1 = figure(width=215, height=170,

background_fill_color="#fafafa", title="Y1 from Training data")
 s1.circle(x, y1, size=3, color="#53777a", alpha=0.8)

 # create plot with ideal data y16
 s2 = figure(width=215, height=170,

background_fill_color="#fafafa", title="Chosen ideal function (Y16)")
 s2.circle(x, i_y1, size=3, color="#c02942", alpha=0.8)

 y2 = [y2[2] for y2 in td]
 i_y2 = [i_y2[20] for i_y2 in td_ideal]

 28

 # create plot with training data y2
 s3 = figure(width=215, height=170,

background_fill_color="#fafafa", title="Y2 from Training data")
 s3.circle(x, y2, size=3, color="#53777a", alpha=0.8)

 # create plot with ideal data y20
 s4 = figure(width=215, height=170,

background_fill_color="#fafafa", title="Chosen ideal function (Y20)")
 s4.circle(x, i_y2, size=3, color="#c02942", alpha=0.8)

 y3 = [y3[3] for y3 in td]
 i_y3 = [i_y3[11] for i_y3 in td_ideal]

 # create plot with training data y2
 s5 = figure(width=215, height=170,

background_fill_color="#fafafa", title="Y3 from Training data")
 s5.circle(x, y3, size=3, color="#53777a", alpha=0.8)

 # create plot with ideal data y3
 s6 = figure(width=215, height=170,

background_fill_color="#fafafa", title="Chosen ideal function (Y11)")
 s6.circle(x, i_y3, size=3, color="#c02942", alpha=0.8)

 y4 = [y4[4] for y4 in td]
 i_y4 = [i_y4[18] for i_y4 in td_ideal]

 # create plot with training data y2
 s7 = figure(width=215, height=170,

background_fill_color="#fafafa", title="Y4 from Training data")
 s7.circle(x, y4, size=3, color="#53777a", alpha=0.8)

 # create plot with ideal data y3
 s8 = figure(width=215, height=170,

background_fill_color="#fafafa", title="Chosen ideal function (Y18)")
 s8.circle(x, i_y4, size=3, color="#c02942", alpha=0.8)

 # make a grid
 grid = gridplot([[s1, s2], [s3, s4], [s5, s6], [s7, s8]])
 show(grid)

 def plot_test_ideal_data_points(self):

 # output to static HTML file
 output_file("output/testdata-mapped-to-idealdata.html")

 # Get data from stats class
 data = Stats()

 mapped_test_data_point_x, mapped_ideal_data_point_x,\
 mapped_test_data_point_y, mapped_ideal_data_point_y\
 = data.map_test_data()

 p = figure(plot_width = 600, plot_height=600, title = "Test

 29

datapoints mapped to ideal datapoints") #, x_range=(-1000, 1000),

y_range=(-1000, 1000)

 circles1 = p.circle(mapped_test_data_point_x,

mapped_test_data_point_y, size=5, color="red", line_color=None,

legend_label="Test data points")
 circles1.selection_glyph = Circle(fill_color="blue",

line_color=None)
 circles1.nonselection_glyph =

Circle(fill_color="red", line_color=None)

 circles2 = p.circle(mapped_ideal_data_point_x,

mapped_ideal_data_point_y, size=5, color="blue", line_color=None,

legend_label="Ideal data points")
 circles2.selection_glyph = Circle(fill_color="blue",

line_color=None)
 circles2.nonselection_glyph =

Circle(fill_color="red", line_color=None)

 # display legend in top right corner
 p.legend.location = "top_right"

 # give title to legend
 p.legend.title = "Mapped points"

 show(p)

 30

Statistics class (stats.py)

from numpy.lib.function_base import append
from database import *
from plot import *

class Stats():

 '''
 This class is responsible for all statistics needed for the

assignment like,
 choosing the Ideal function, calculating least squares, mean squared

error etc.
 '''

 def choose_ideal_functions(self):

 '''

 This function chooses the ideal functions from the ideal table in

the SQLite database table.
 For each Y-value in the training data columns it computes the

Total Least Squares deviation and
 compares this with the computed Y-value deviations from the ideal

data columns.
 The one column from the ideal data that has the smallest

difference in
 Total Least Squares deviation with the training data is then

choosen as ideal.

 Raises:
 ..

 Returns:

 Tuple with choosen ideal functions for each training function and

the value of the deviation

 '''
 np.set_printoptions(suppress=True) #Disable scientific notation

in Numpy, so we can
 #more easily see what our data looks like
 data_actions = DataBase()
 training_data = data_actions.read_training_data()
 ideal_data = data_actions.read_ideal_data()

 ty = np.delete(training_data, 0, axis=1) #remove column with x

values from matrix, since we don't need it to choose Ideal function
 iy = np.delete(ideal_data, 0, axis=1) #remove column with x

values from matrix, since we don't need it to choose Ideal function

 31

 #Create dictionaries with mean sqaured errors
 mse_y_1 = {}
 mse_y_2 = {}
 mse_y_3 = {}
 mse_y_4 = {}

 for t_yn in range(0, 4):
 for i_yn in range(0, 50):
 mse = np.square(np.subtract(ty[:, t_yn],iy[:,

i_yn])).mean() # calculate mean squared errors between training-y and

ideal-y functions
 if (t_yn == 0):
 mse_y_1[i_yn] = mse
 if (t_yn == 1):
 mse_y_2[i_yn] = mse
 if (t_yn == 2):
 mse_y_3[i_yn] = mse
 if (t_yn == 3):
 mse_y_4[i_yn] = mse

 # Create tuples y1..yn with the choosen ideal function minimum

deviation and the value
 # of the deviation
 y_1 = min(mse_y_1.items(), key=lambda x: x[1])
 y_2 = min(mse_y_2.items(), key=lambda x: x[1])
 y_3 = min(mse_y_3.items(), key=lambda x: x[1])
 y_4 = min(mse_y_4.items(), key=lambda x: x[1])

 return y_1, y_2, y_3, y_4

 def map_test_data(self):

 '''

 This function will map the test data to the ideal data and save

the deviation at hand
 when the maximum deviation of the calculated regression does not

exceed the largest deviation
 between training dataset (A) and the ideal function (C) chosen

for it by more than
 factor sqrt(2)

 Parameters:
 ..

 Raises:
 ..

 Returns:
 ..

 32

 '''
 np.set_printoptions(suppress=True) #Disable scientific notation

in Numpy, so we can
 #more easily see what our data looks like
 data_actions = DataBase()
 test_data = data_actions.read_test_data()
 ideal_data = data_actions.read_ideal_data()

 #Create lists of the ideal function columns from the matrix with

ideal data
 i_y1 = [i_y1[16] for i_y1 in ideal_data]
 i_y2 = [i_y1[20] for i_y1 in ideal_data]
 i_y3 = [i_y1[11] for i_y1 in ideal_data]
 i_y4 = [i_y1[18] for i_y1 in ideal_data]
 ideal_data_point_x = [i_x[0] for i_x in ideal_data]

 ty = test_data
 # max deviation
 max_dev = 0.08778705256534793

 max_dev_square_root = math.sqrt(max_dev) #error band, not exactly

sure what teacher means, keep both, and ask Lino
 devsquared = max_dev * math.sqrt(2)

 # create lists of mapped points to pass to plotter class
 mapped_test_data_point_x = []
 mapped_test_data_point_y = []
 mapped_ideal_data_point_x = []
 mapped_ideal_data_point_y = []

 for idt, t_yn in enumerate(ty):
 for idi, ideal_data_point in enumerate(i_y1):
 mse =

np.square(np.subtract(t_yn[1],ideal_data_point)).mean() # calculate mean

squared errors between training-y and ideal-y functions
 if mse <= devsquared:
 data_actions.insert_mapped_test_data(t_yn[0],

t_yn[1], mse, 16)
 mapped_test_data_point_x.append(t_yn[0])
 mapped_test_data_point_y.append(t_yn[1])
 mapped_ideal_data_point_x.append(ideal_data_point_x[i

di])
 mapped_ideal_data_point_y.append(ideal_data_point)

 for idi2, ideal_data_point2 in enumerate(i_y2):
 mse =

np.square(np.subtract(t_yn[1],ideal_data_point2)).mean() # calculate mean

squared
 if mse <= devsquared:
 data_actions.insert_mapped_test_data(t_yn[0],

t_yn[1], mse, 20)

 33

 mapped_test_data_point_x.append(t_yn[0])
 mapped_test_data_point_y.append(t_yn[1])
 mapped_ideal_data_point_x.append(ideal_data_point_x[i

di2])
 mapped_ideal_data_point_y.append(ideal_data_point2)

 for idi3, ideal_data_point3 in enumerate(i_y3):
 mse =

np.square(np.subtract(t_yn[1],ideal_data_point3)).mean()
 if mse <= devsquared:
 data_actions.insert_mapped_test_data(t_yn[0],

t_yn[1], mse, 11)
 mapped_test_data_point_x.append(t_yn[0])
 mapped_test_data_point_y.append(t_yn[1])
 mapped_ideal_data_point_x.append(ideal_data_point_x[i

di3])
 mapped_ideal_data_point_y.append(ideal_data_point3)

 for idi4, ideal_data_point4 in enumerate(i_y4):
 mse =

np.square(np.subtract(t_yn[1],ideal_data_point4)).mean()
 if mse <= devsquared:
 data_actions.insert_mapped_test_data(t_yn[0],

t_yn[1], mse, 18)
 mapped_test_data_point_x.append(t_yn[0])
 mapped_test_data_point_y.append(t_yn[1])
 mapped_ideal_data_point_x.append(ideal_data_point_x[i

di4])
 mapped_ideal_data_point_y.append(ideal_data_point4)

 return mapped_test_data_point_x, mapped_ideal_data_point_x,

mapped_test_data_point_y, mapped_ideal_data_point_y

 34

Unit test (unit_test.py)

import unittest
import pathlib as pl

Subclass unit test testcase
class TestCaseBase(unittest.TestCase):
 def assertIsFile(self, path):
 if not pl.Path(path).resolve().is_file():
 raise AssertionError("File does not exist: %s" % str(path))

Subclassing our own created TestCaseBase class
class DataTest(TestCaseBase):
 def test_test_data(self):
 path = pl.Path("data/test.csv")
 self.assertIsFile(path)

 def test_ideal_data(self):
 path = pl.Path("data/ideal.csv")
 self.assertIsFile(path)

 def test_train_data(self):
 path = pl.Path("data/train.csv")
 self.assertIsFile(path)

if __name__ == '__main__':
 unittest.main()

 35

Main (run_ouput.py)

from database import *
from plot import *
from stats import *
from unit_test import *

def my_suite():
 suite = unittest.TestSuite()
 result = unittest.TestResult()
 suite.addTest(unittest.makeSuite(DataTest))
 runner = unittest.TextTestRunner()
 print(runner.run(suite))

def main():

 # run tests to check if datafiles are in place
 my_suite()

 data_actions = DataBase()
 # Create Tables
 data_actions.insert_training_data()
 data_actions.insert_ideal_data()

 plot_actions = Plot()
 plot_actions.plot_training_and_ideal()

 plot_actions.plot_test_ideal_data_points()

run the program
if __name__ == "__main__":
 main()

 36

Git commands

To clone the project
git clone https://github.com/MadebyhumansAI/least-squares-ideal-functions.git

After editing a file
git commit -am "Edited file”

To push it again to the repository
git push

After adding files to the repository
git add filename

Or to add all files that are changed
git add .

To check the status of the branche
git status

To pull the changes a colleague made
git pull

https://github.com/MadebyhumansAI/least-squares-ideal-functions.git
https://github.com/MadebyhumansAI/least-squares-ideal-functions.git
https://github.com/MadebyhumansAI/least-squares-ideal-functions.git

 37

Bibliography

Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). A training algorithm for optimal margin

classifiers. In COLT ‘92: Proceedings of the fifthannual workshop on Computational learning

theory, pages 144-152, New York, NY, USA. ACM.

Burkov, A. (2019). The Hundred-page Machine Learning Book.

Dekking, & Michel. (1946). A Modern Introduction to Probability and Statistics. Springer Science &

Business Media.

Fujii, K. (2018). Least Squares Method from the View Point of Deep Learning. Advances in Pure

Mathematics, 05, 485–493. https://doi.org/10.4236/apm.2018.85027

Merriman, M. (1877). A List of Writings Relating to the Method of Least Squares.

Miller, S. (n.d.). The Method of Least Squares. Department of Mathematics and Statistics Williams

College.

https://web.williams.edu/Mathematics/sjmiller/public_html/probabilitylifesaver/MethodLeastSquare

s.pdf

https://doi.org/10.4236/apm.2018.85027
https://web.williams.edu/Mathematics/sjmiller/public_html/probabilitylifesaver/MethodLeastSquares.pdf
https://web.williams.edu/Mathematics/sjmiller/public_html/probabilitylifesaver/MethodLeastSquares.pdf

	Table of Abbreviations
	2.2 Fundamental algorithms
	2.2 Fundamental algorithms
	2.5 Decision Tree Learning
	2.5 Decision Tree Learning
	2.7 k-Nearest Neighbors
	2.7 k-Nearest Neighbors
	Read me
	Read me
	Database class (database.py)
	Custom Exception class (custom_exception.py)
	Plotting class (plot.py)
	Statistics class (stats.py)
	Statistics class (stats.py)
	Unit test (unit_test.py)
	Main (run_ouput.py)
	Bibliography

